The Teaching of Geometry
David Eugene Smith
Paperback
(RareBooksClub.com, June 27, 2012)
This historic book may have numerous typos and missing text. Purchasers can download a free scanned copy of the original book (without typos) from the publisher. Not indexed. Not illustrated. 1911 edition. Excerpt: ...conversation that we cannot keep it to mean "congruent"; but our language will not permit it, and we are forced to use the newer word. Whenever it can be used without misunderstanding, however, it should be retained, as in the case of "equal straight lines," "equal angles," and "equal arcs of the same circle." The mathematical and educational world will never consent to use "congruent straight lines," or "congruent angles," for the reason that the terms are unnecessarily long, no misunderstanding being possible when "equal" is used. The word " equivalent" was introduced by Legendre at the close of the eighteenth century to indicate equality of length, or of area, or of volume. Euclid had said, "Parallelograms which are on the same base and in the same parallels are equal to one another," while Legendre and his followers would modify the wording somewhat and introduce "equivalent" for "equal." This usage has been retained. Congruent polygons are therefore necessarily equivalent, but equivalent polygons are not in general congruent. Congruent polygons have mutually equal sides and mutually equal angles, while equivalent polygons have no equality save that of area. In general, as already stated, these and other terms should be defined just before they are used instead of at the beginning of geometry. The reason for this, from the educational standpoint and considering the present position of geometry in the curriculum, is apparent. We shall now consider the definitions of Euclid's Book III, which is usually taken as Book II in America. 1. Equal Circles. Equal circles are those the diameters of which are equal, or the radii of which are...